विमा से आप क्या समझते है ? विमीय विश्लेषण की सीमाओं का उल्लेख कीजिए ।

विमा किसे कहते है? ~ What is Dimensional

भौतिक राशियों की विमा वे घात है जिन्हें भौतिक राशियों के मात्रक प्राप्त करने के लिए मूल मात्रकों पर जो घात चढ़ाई जाती है उसे विमा कहते है।

विमीय विश्लेषण की सीमाएं ~ Limitations Of Dimensional

  • इस विधि से विमाहीन राशि का मान ज्ञात नहीं किया सकता ।
  • इस विधि से त्रिकोणमिति , लघुगणकीय आदि वाले समीकरण को ज्ञात नहीं किया जा सकता ।
  • इस विधि से ऐसे नियतांक का मान ज्ञात नहीं किया जा सकता जिसकी विमा होती है । उदाहरण – सार्वत्रिक गुरुत्वाकर्षण नियतांक G.
  • इस विधि से उस समीकरण को निगमित नहीं किया जा सकता जिसमें एक से अधिक पद हैं । जैसे – V = u + at ऐसे सम्बन्धों को निगमित नहीं किया जा सकता है जिसमें कहीं पर भी धन (+) अथवा ऋण ( – ) का चिन्ह हो लेकिन इसकी विमीय सत्यता की जांच की जा सकती है।
  • यदि कोई भौतिक राशि का मान तीन से अधिक राशियों पर निर्भर करता है तो उनके मध्य संबंध स्थापित नहीं किया जा सकता । परन्तु किसी दिए हुए इस प्रकार के समीकरण की विमीय सत्यता की जांच की जा सकती है।
  • कोई भौतिक राशि सदिश हो या अदिश, विमीय विश्लेषण विधि से ज्ञात नहीं किया जा सकता है।

विमीय समीकरण ~ Dimensional Equation

किसी भौतिक राशि को दर्शाने वाले भौतिक सूत्र में उपस्थित सभी राशियों के मात्रकों को विमीय रुप में लिखने पर जो समीकरण प्राप्त होता है उसे विमीय समीकरण कहते है।

WhatsApp Group Join Now
Telegram Group Join Now
Instagram Group Join Now

जैसे – :

कार्य का विमीय समीकरण –

कार्य = बल X विस्थापन
W = F X d

भौतिक राशियों क विमीय रूप लिखने पर

W = [ M1L1T-2 ] X [ M0L1T0 ]

W = [ M1L2T-2 ]

विमीय समीकरण में विमाओं के लिए लगाया गया कोष्ठक [ ] दर्शाता है कि समीकरण भौतिक राशि की विमाओं के बीच है न कि उनके परिमाणों के बीच है ।

विमीय समांगता का सिद्धान्त

इस सिद्धान्त के अनुसार ” किसी भौतिक समीकरण के दोनों पक्षों के पदों की विमाएँ सदैव समान होती हैं ।” अर्थात् केवल उन्हीं राशियों को जोड़ा या घटाया जा सकता है जिनकी विमाएँ समान हों । इसे “विमा के एक रूपता का सिद्धान्त “ भी कहते है।

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top